

FBL2031
9-bit BTL 3.3V latched/registered/pass-thru Futurebus+ transceiver

9-bit BTL 3.3V latched/registered/pass-thru Futurebus+ transceiver

FEATURES

- Latched, registered or straight through in either A to B or B to A path
- Drives heavily loaded backplanes with equivalent load impedances down to 10Ω.
- High drive 100 mA BTL open collector drivers on B-port
- Allows incident wave switching in heavily loaded backplane buses
- Reduced BTL voltage swing produces less noise and reduces power consumption
- Built-in precision band-gap reference provides accurate receiver thresholds and improved noise immunity
- Compatible with IEEE Futurebus+ or proprietary BTL backplanes
- Each BTL driver has a dedicated Bus GND for a signal return
- Controlled output ramp and multiple GND pins minimize ground bounce
- Glitch-free power up/power down operation
- Low ICC current
- Tight output skew
- Supports live insertion
- Pins for the optional JTAG boundary scan function are provided
- High density packaging in plastic Quad Flatpack
- 5 V compatible I/O on A-port

DESCRIPTION

The FBL2031 is a 9-bit latched/registered transceiver featuring a latched, registered or pass-thru mode in either the A-to-B or B-to-A direction.

The FBL2031 is intended to provide the electrical interface to a high performance wired-OR bus.

QUICK REFERENCE DATA

SYMBOL	PARAMETER		TYPICAL	UNIT
$\begin{aligned} & \hline \mathrm{tPLH}^{t_{\mathrm{PHLL}}} \end{aligned}$	Propagation delay An to Bn		2.7	ns
$\begin{aligned} & \hline \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation delay $\overline{B n}$ to An		$\begin{aligned} & 4.4 \\ & 4.2 \end{aligned}$	ns
C_{O}	Output capacitance ($\overline{\mathrm{BO}}$ - $\overline{\mathrm{Bn}}$ only)		6	pF
l L	Output current ($\overline{\mathrm{BO}}$ - Bn only)		100	mA
Icc	Supply current	Aln to Bn (outputs Low or High)	11	mA
		$\overline{\mathrm{Bn}}$ to AOn (outputs Low)	22	
		$\overline{\mathrm{Bn}}$ to AOn (outputs High)	18	

ORDERING INFORMATION

PACKAGE	$\mathrm{V}_{\mathrm{CC}}=\mathbf{3 . 3 V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathrm{amb}}=-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$	DWG No.
52-pin Plastic Quad Flat Pack (PQFP)	FBL2031BB	SOT379-1

9-bit BTL 3.3V latched/registered/pass-thru Futurebus+ transceiver

PIN CONFIGURATION

PIN DESCRIPTION

SYMBOL	PIN NUMBER	TYPE	NAME AND FUNCTION
A0 - A8	50, 52, 2, 4, 6, 8, 10, 12, 14	I/O	BiCMOS data inputs/3-State outputs (TTL)
B0-B8	$\begin{gathered} 40,38,36,34,32, \\ 30,28,26,24 \end{gathered}$	I/O	Data inputs/Open Collector outputs, High current drive (BTL)
OEB0	46	Input	Enables the B outputs when High
OEB1	45	Input	Enables the B outputs when Low
OEA	47	Input	Enables the A outputs when High
BUS GND	$\begin{gathered} \hline 25,27,29,31,33, \\ 35,37,39,41 \end{gathered}$	GND	Bus ground (0V)
LOGIC GND	51, 1, 3, 5, 7, 9, 11, 13	GND	Logic ground (0V)
V_{CC}	23, 43, 49	Power	Positive supply voltage
BIAS V	48	Power	Live insertion pre-bias pin
BG V CC	17	Power	Band Gap threshold voltage reference
BG GND	19	GND	Band Gap threshold voltage reference ground
SELO	20	Input	Mode select
SEL1	15	Input	Mode select
LCAB	18	Input	A to B clock/latch enable (transparent latch when Low)
LCBA	16	Input	B to A clock/latch enable (transparent latch when Low)
TMS	42	Input	Test Mode Select (optional, if not implemented then no connect)
TCK	44	Input	Test Clock (optional, if not implemented then no connect)
TDI	22	Input	Test Data In (optional, if not implemented then no connect)
TDO	21	Output	Test Data Out (optional, if not implemented then shorted to TDI)

9-bit BTL 3.3V latched/registered/pass-thru Futurebus+ transceiver

DESCRIPTION

The TTL-level side (A port) has a common I/O. The common I/O, open collector B port operates at BTL signal levels. The logic element for data flow in each direction is controlled by two mode select inputs (SEL0 and SEL1). A "00" configures latches in both directions. A "10" configures thru mode in both directions. A "01" configures register mode in both directions. A "11" configures register mode in the A-to-B direction and latch mode in the B-to-A direction.

When configured in the buffer mode, the inverse of the input data appears at the output port. In the register mode, data is stored on the rising edge of the appropriate clock input (LCAB or LCBA). In the latch mode, clock pins serve as transparent-Low latch enables. Regardless of the mode, data is inverted from input to output.

The 3-State A port is enabled by asserting a High level on OEA. The B port has two output enables, OEB0 and OEB1. Only when OEB0 is High and OEB1 is Low is the output enabled.
When either OEB0 is Low or OEB1 is High, the B port is inactive and is pulled to the level of the pull-up voltage. New data can be entered in the register and latched modes or can be retained while the associated outputs are in 3-State (A port) or inactive (B port).
The B-port drivers are Low-capacitance open collectors with controlled ramp and are designed to sink 100 mA . Precision band gap references on the B-port insure very good noise margins by limiting the switching threshold to a narrow region centered at 1.55 V .

The B-port interfaces to "Backplane Transceiver Logic" (see the IEEE 1194.1 BTL standard). BTL features low power consumption by reducing voltage swing (1 V p-p, between 1 V and 2 V) and reduced capacitive loading by placing an internal series diode on the
drivers. BTL also provides incident wave switching, a necessity for high performance backplanes.
Output clamps are provided on the BTL outputs to further reduce switching noise. The " V_{OH} " clamp reduces inductive ringing effects during a Low-to-High transition. The " V_{OH} " clamp is always active. The other clamp, the "trapped reflection" clamp, clamps out ringing below the BTL $0.5 \mathrm{~V} \mathrm{~V}_{\mathrm{OL}}$ level. This clamp remains active for approximately 100ns after a High-to-Low transition.

To support live insertion, OEB0 is held Low during power on/off cycles to insure glitch- free B port drivers. Proper bias for B port drivers during live insertion is provided by the BIAS V pin when at a 3.3V level while V_{CC} is Low. The BIAS V pin is a low current input which will reverse-bias the BTL driver series Schottky diode, and also bias the B port output pins to a voltage between 1.62 V and 2.1V. This bias function is in accordance with IEEE BTL Standard 1194.1. If live insertion is not a requirement, the BIAS V pin should be tied to a $V_{C C}$ pin.

The LOGIC GND and BUS GND pins are isolated inside the package to minimize noise coupling between the BTL and TTL sides. These pins should be tied to a common ground external to the package.
Each BTL driver has an associated BUS GND pin that acts as a signal return path and these BUS GND pins are internally isolated from each other. In the event of a ground return fault, a "hard" signal failure occurs instead of a pattern dependent error that may be infrequent and impossible to troubleshoot.

As with any high power device, thermal considerations are critical. It is recommended that airflow (300lfpm) and/or thermal mounting be used to ensure proper junction temperature.

PACKAGE THERMAL CHARACTERISTICS

PARAMETER	CONDITION	52-PIN PLASTIC QFP
$\theta j \mathrm{ja}$	Still air	$80^{\circ} \mathrm{C} / \mathrm{W}$
$\theta \mathrm{ja}$	300 Linear feet per minute air flow	$58^{\circ} \mathrm{C} / \mathrm{W}$
$\theta \mathrm{jc}$	Thermally mounted on one side to heat sink	$20^{\circ} \mathrm{C} / \mathrm{W}$

9-bit BTL 3.3V latched/registered/pass-thru Futurebus+ transceiver

FUNCTION TABLE

MODE	INPUTS									OUTPUTS	
	An	$\overline{B^{*}}$	OEB0	OEB1	OEA	LCAB	LCBA	SELO	SEL1	An	$\overline{B n}$
An to $\overline{\mathrm{Bn}}$ thru mode	L	-	H	L	L	X	X	H	L	input	$\mathrm{H}^{* *}$
	H	-	H	L	L	X	X	H	L	input	L
An to Bn transparent latch	L	-	H	L	L	L	X	L	L	input	$\mathrm{H}^{* *}$
	H	-	H	L	L	L	X	L	L	input	L
An to Bn latch and read	I	-	H	L	L	\uparrow	X	L	L	input	$\mathrm{H}^{* *}$
	h	-	H	L	L	\uparrow	X	L	L	input	L
$\overline{B n}$ outputs latched and read (preconditioned latch)	X	-	H	L	X	H	X	L	L	X	latched data
An to Bn register	1	-	H	L	L	\uparrow	X	X	H	input	$\mathrm{H}^{* *}$
	h	-	H	L	L	\uparrow	X	X	H	input	L
$\overline{\mathrm{Bn}}$ to An thru mode	-	L	Disable		H	X	X	H	L	H	input
	-	H	Disable		H	X	X	H	L	L	input
$\overline{\mathrm{Bn}}$ to An transparent latch	-	L	Disable		H	X	L	L	L	H	input
	-	H	Disable		H	X	L	L	L	L	input
	-	L	Disable		H	X	L	H	H	H	input
	-	H	Disable		H	X	L	H	H	L	input
Bn to An latch and read	-	I	Disable		H	X	\uparrow	L	L	H	input
	-	h	Disable		H	X	\uparrow	L	L	L	input
	-	1	Disable		H	X	\uparrow	H	H	H	input
	-	h	Disable		H	X	\uparrow	H	H	L	input
An outputs latched and read (preconditioned latch)	-	X	X	X	H	X	H	L	L	latched data	X
	-	X	X	X	H	X	H	H	H	latched data	X
Bn to An register	-	I	Disable		H	X	\uparrow	L	H	H	input
	-	h	Disable		H	X	\uparrow	L	H	L	input
Disable Bn outputs	X	X	L	X	X	X	X	X	X	X	$\mathrm{H}^{* *}$
	X	X	X	H	X	X	X	X	X	X	$\mathrm{H}^{\star *}$
Disable An outputs	X	X	X	X	L	X	X	X	X	Z	X

FUNCTION SELECT TABLE

MODE SELECTED	SEL0	SEL1
Thru mode	H	L
Register mode (An to Bn)	X	H
Latch mode (An to Bn)	L	L
Register mode (Bn to An)	L	H
Latch mode (Bn to An)	L	L
	H	H

NOTES:

```
H = High voltage level
L = Low voltage level
| = Low voltage level one set-up time prior to the Low-to-High LCXX transition
\(\mathrm{h}=\) High voltage level one set-up time prior to the Low-to-High LCXX transition
\(X=\) Don't care
```

Z $=$ High-impedance (OFF) state

- = Input not externally driven
$\uparrow=$ Low-to-High transition
$H^{* *}=$ Goes to level of pull-up voltage
$\overline{B n}^{*}=$ Precaution should be taken to ensure B inputs do not float. If they do, they are equal to Low state.
Disable $=$ OEB0 is Low or OEB1 is High.

9-bit BTL 3.3V latched/registered/pass-thru
Futurebus+ transceiver

LOGIC DIAGRAM

9-bit BTL 3.3V latched/registered/pass-thru Futurebus+ transceiver

ABSOLUTE MAXIMUM RATINGS

Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.

SYMBOL	PARAMETER		RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage		-0.5 to +4.6	V
$\mathrm{V}_{\text {IN }}$	Input voltage	AIO - AI6, OEB0, OEBn, OEAn	-0.5 to +7.0	V
		$\overline{\mathrm{B} 0}-\overline{\mathrm{B}} 8$	-0.5 to +3.5	
1 IN	Input current	$\mathrm{V}_{\text {IN }}<0$	-50	
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to +7.0	V
lout	Current applied to output in Low output state/High output state	AO0 - AO8	64, -64	mA
		B0 - B8	200	
TSTG	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		$\begin{gathered} \hline \text { COMMERCIAL LIMITS } \\ \mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \pm 10 \% ; \\ \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			UNIT
			MIN	TYP	MAX	
V_{CC}	Supply voltage		3.0	3.3	3.6	V
V_{IH}	High-level input voltage	Except B0-B8	2.0			V
		$\overline{\mathrm{B0}}$ - $\overline{\mathrm{B}} 8$	1.62	1.55		
VIL	Low-level input voltage	Except B0-B8			0.8	V
		$\overline{\mathrm{B0}}$ - $\overline{\mathrm{B}}$			1.47	
$\mathrm{I}_{\text {IK }}$	Input clamp current				-18	mA
IOH	High-level output current	AO0 - AO8			-32	mA
${ }^{\text {lob }}$	Low-level output current	AO0 - AO8			+32	mA
		$\overline{\mathrm{B0}}$ - $\overline{\mathrm{B}}$			100	
C_{OB}	Output capacitance on B port			6	7	pF
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		0		+70	${ }^{\circ} \mathrm{C}$

LIVE INSERTION SPECIFICATIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			MIN	TYP	MAX	
$\mathrm{V}_{\text {BIASV }}$	Bias pin voltage	Voltage difference between the Bias voltage and V_{CC} after the PCB is plugged in.	-	-	0.5	V
$\mathrm{I}_{\text {BIASV }}$	Bias pin (IBIASV) input DC current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$, Bias $\mathrm{V}=3.6 \mathrm{~V}$			1.2	mA
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, Bias $\mathrm{V}=3.6 \mathrm{~V}$			10	$\mu \mathrm{A}$
$V_{\text {Bn }}$	Bus voltage during prebias	$\overline{\mathrm{BO}}-\mathrm{B8}=0 \mathrm{~V}$, Bias V $=3.3 \mathrm{~V}$	1.62		2.1	V
ILM	Fall current during prebias	$\overline{\mathrm{BO}}-\mathrm{B} 8=2 \mathrm{~V}$, Bias V $=1.3$ to 2.5 V			1	$\mu \mathrm{A}$
IHM	Rise current during prebias	B0 - B8 = 1V, Bias V $=3$ to 3.6V	-1			$\mu \mathrm{A}$
$I_{\text {Bn }}$ PEAK	Peak bus current during insertion	$\begin{aligned} & \mathrm{V} \mathrm{CC}=0 \text { to } 3.3 \mathrm{~V}, \mathrm{BO}-\mathrm{B8}=0 \text { to } 2.0 \mathrm{~V}, \\ & \mathrm{Bias} \mathrm{~V}=2.7 \text { to } 3.6 \mathrm{~V}, \mathrm{OEBO}=0.8 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=2 \mathrm{~ns} \end{aligned}$			10	mA
IolOFF	Power up current	$\mathrm{V}_{\text {CC }}=0$ to 3.3V, OEB0 $=0.8 \mathrm{~V}$			100	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0$ to 1.2V, OEB0 $=0$ to 5 V			100	
t_{GR}	Input glitch rejection	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	1.0	1.35		ns

9-bit BTL 3.3V latched/registered/pass-thru Futurebus+ transceiver

DC ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range unless otherwise noted.

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			MIN	TYP ${ }^{2}$	MAX			
IOH	High level output current	$\overline{\mathrm{BO}}$ - $\overline{\mathrm{B}}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\text {OH }}=1.9 \mathrm{~V}$			100	$\mu \mathrm{A}$
IofF	Power-off output current	$\overline{\mathrm{BO}}$ - $\overline{\mathrm{B}}$	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{OH}}=1.9 \mathrm{~V}$			100	$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{OH}}=1.9 \mathrm{~V} @ 85^{\circ} \mathrm{C}$			300		
V_{OH}	High-level output voltage	AOO - AOB^{3}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$ to MAX	$\mathrm{V}_{\mathrm{CC}}-0.2$			V	
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ; \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.4			V	
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ; \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	2.0			V	
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	AO0 - AO8 ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ; \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.4	V	
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ; \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$			0.5	V	
		$\overline{\mathrm{B0}}$ - $\overline{\mathrm{B} 8}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	0.5				
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$	0.75	1.0	1.20		
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$		-0.85	-1.2	V	
1	Input leakage current	Control pins	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND			± 1.0	$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			10		
		AIO - AI8 Note 4	$\mathrm{V}_{C C}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{C C}$			1		
			$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$			-5		
$\mathrm{IIH}^{\text {H }}$	High-level input current	$\overline{\mathrm{BO}}$ - $\overline{\mathrm{B}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=1.9 \mathrm{~V}$			100	$\mu \mathrm{A}$	
			$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=3.5 \mathrm{~V}$, note 5	100			mA	
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=3.75 \mathrm{~V} @-40^{\circ} \mathrm{C}$	100				
IIL	Low-level input current	$\overline{\mathrm{BO}}$ - $\overline{\mathrm{B}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.75 \mathrm{~V}$			-100	$\mu \mathrm{A}$	
IOZH	Off-state output current	AO0-AO8	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$			5	$\mu \mathrm{A}$	
lozl	Off-state output current	AO0-AO8	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-5	$\mu \mathrm{A}$	
ICC	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}} \mathrm{B}$ to A	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, outputs High		18	32	mA	
		$\mathrm{I}_{\text {CCL }} \mathrm{B}$ to A	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, outputs Low		22	37	mA	
		$\mathrm{I}_{\mathrm{CCH}}$ A to B	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, outputs High		11	16	mA	
		$\mathrm{I}_{\mathrm{CCL}} \mathrm{A}$ to B	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, outputs Low		11	16	mA	
		ICCZ	$V_{C C}=M A X$		18	32	mA	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operation conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Due to test equipment limitations, actual test conditions are $\mathrm{V}_{\mathrm{IH}}=1.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=1.3 \mathrm{~V}$ for the B side.
4. Unused pins are at V_{CC} or GND.
5. For B port input voltage between 3 and 5 volt; I_{IH} will be greater than 100 mA but the part will continue to function normally (clamping circuit is active). This is not a tested condition.

9-bit BTL 3.3V latched/registered/pass-thru Futurebus+ transceiver

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	$\begin{gathered} \text { TEST } \\ \text { CONDITION } \end{gathered}$	B TO A SPECIFICATIONS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 10 \%, \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 4	120	150				MHz
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay (thru mode) Bn to An	Waveform 1, 2	$\begin{aligned} & 2.8 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.3 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.8 \\ & 7.3 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay (transparent latch) Bn to An	Waveform 1, 2	$\begin{aligned} & 2.8 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 7.8 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay LCBA to An (latch)	Waveform 1, 2	$\begin{aligned} & 7.7 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 10.2 \\ & 10.1 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.9 \end{aligned}$	$\begin{aligned} & \hline 6.1 \\ & 6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 15.6 \\ & 15.4 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay LCBA to An (register)	Waveform 1, 2	$\begin{aligned} & 2.7 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.1 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \hline 6.7 \\ & 6.9 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{array}{\|l} \hline \text { Propagation delay } \\ \text { SELO or SEL1 to An (inverting) } \\ \hline \end{array}$	Waveform 1, 2	$\begin{aligned} & 2.9 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.8 \\ & 5.8 \end{aligned}$	$\begin{gathered} \hline 9.1 \\ 10.4 \\ \hline \end{gathered}$	$\begin{aligned} & 2.2 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.5 \\ & 11.6 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay SELO or SEL1 to An (non-inverting)	Waveform 1, 2	$\begin{aligned} & \hline 2.0 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.6 \end{aligned}$	$\begin{gathered} \hline 10.3 \\ 8.8 \\ \hline \end{gathered}$	$\begin{aligned} & 1.4 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \hline 12.3 \\ & 10.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output enable time from High or Low OEA to An	Waveform 5, 6	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 7.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \hline 6.6 \\ & 8.3 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpZL } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output disable time to High or Low OEA to An	Waveform 5, 6	$\begin{aligned} & 2.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 3.7 \end{aligned}$	$\begin{aligned} & \hline 2.1 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.4 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output transition time, An Port 10% to $90 \%, 90 \%$ to 10%	Test Circuit and Waveforms				$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.2 \end{aligned}$	ns
$\mathrm{t}_{\text {Sk }}(0)$	Output to output skew for multiple channels ${ }^{1}$	Waveform 3		0.5	1.0		1.5	ns
$\mathrm{t}_{\text {Sk }}(\mathrm{p})$	Pulse skew ${ }^{2}$ $\left.\right\|_{\text {tPHL }}-\text { tpLH }\left.\right\|_{\text {MAX }}$	Waveform 2		0.5	1.0		1.5	ns

NOTES:

1. Itpnactual - tpmactual |for any data input to output path compared to any other data input to output path where N and M are either LH or HL. Skew times are valid only under same test conditions (temperature, V_{CC}, loading, etc.). $\mathrm{t}_{\mathrm{SK}}(0)$ compares $t_{\text {PLH }}$ on a given path to $t_{\text {PLH }}$ on any other path or compares t_{PHL} on a given path to t_{PHL} on any other path.
2. $t_{S K}(p)$ is used to quantify duty cycle characteristics. In essence it compares the input signal duty cycle to the corresponding output signal duty cycle (50 MHz input frequency and 50% duty cycle, tested on data paths only).

9-bit BTL 3.3V latched/registered/pass-thru
Futurebus+ transceiver

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	A TO B 9Ω LOAD SPECIFICATIONS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \hline \text { tPLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay (thru latch) An to Bn	Waveform 1, 2	$\begin{aligned} & 1.4 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 2.6 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.8 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.2 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay (transparent latch) An to Bn	Waveform 1, 2	$\begin{aligned} & 1.7 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.7 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{tPLH} \\ & \mathrm{t}_{\mathrm{P} \mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay LCAB to Bn (latch)	Waveform 1, 2	$\begin{aligned} & 8.8 \\ & 8.4 \end{aligned}$	$\begin{aligned} & 11.6 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & 13.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.7 \\ & 6.7 \end{aligned}$	$\begin{aligned} & \hline 17.9 \\ & 16.6 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay LCAB to Bn (register)	Waveform 1, 2	$\begin{aligned} & \hline 2.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.2 \\ & 6.4 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay SELO or SEL1 to Bn (inverting)	Waveform 1, 2	$\begin{aligned} & 2.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.6 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay SEL0 or SEL1 to Bn (non-inverting)	Waveform 1, 2	$\begin{aligned} & 2.0 \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.6 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	OEBn to Bn	Waveform 1, 2	$\begin{aligned} & 1.2 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.4 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output transition time, Bn Port (1.3V to 1.8V)	Test Circuit and Waveforms				$\begin{aligned} & 1.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	ns
${ }_{\text {tsk }}(0)$	Output to output skew for multiple channels ${ }^{1}$	Waveform 3		0.4	1.0		2.0	ns
$\mathrm{t}_{\text {Sk }}(\mathrm{p})$	Pulse skew ${ }^{2}$ $\left.\right\|_{\text {tPHL }}-$ tpLH $\left.\right\|_{\text {MAX }}$	Waveform 2		0.3	1.0		1.5	ns

NOTES:

1. It $t_{\text {pNactual }}$ - $\mathrm{t}_{\text {PM }}$ actual |for any data input to output path compared to any other data input to output path where N and M are either LH or HL . Skew times are valid only under same test conditions (temperature, V_{CC}, loading, etc.). $\mathrm{t}_{\mathrm{SK}}(0)$ compares $\mathrm{t}_{\mathrm{PLH}}$ on a given path to $\mathrm{t}_{\mathrm{PLH}}$ on any other path or compares $t_{P H L}$ on a given path to $t_{P H L}$ on any other path.
2. $t_{S K}(p)$ is used to quantify duty cycle characteristics. In essence it compares the input signal duty cycle to the corresponding output signal duty cycle (50 MHz input frequency and 50% duty cycle, tested on data paths only).

9-bit BTL 3.3V latched/registered/pass-thru
Futurebus+ transceiver

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	A TO B 16.5Ω LOAD SPECIFICATIONS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay (thru latch) An to Bn	Waveform 1, 2	$\begin{aligned} & \hline 1.4 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & 3.6 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay (transparent latch) An to Bn	Waveform 1, 2	$\begin{aligned} & 1.8 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{tPLH} \\ & \mathrm{t}_{\mathrm{P} \mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay LCAB to Bn (latch)	Waveform 1, 2	$\begin{aligned} & \hline 8.6 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 11.4 \\ & 10.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.2 \\ & 13.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 17.5 \\ & 16.1 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay LCAB to Bn (register)	Waveform 1, 2	$\begin{aligned} & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 5.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \hline 6.1 \\ & 5.9 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay SELO or SEL1 to Bn (inverting)	Waveform 1, 2	$\begin{aligned} & 2.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \hline 8.1 \\ & 8.4 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay SELO or SEL1 to Bn (non-inverting)	Waveform 1, 2	$\begin{aligned} & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 6.9 \\ & 5.8 \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 6.9 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	OEB0 to Bn	Waveform 1, 2	$\begin{aligned} & 1.8 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output transition time, Bn Port (1.3V to 1.8 V)	Test Circuit and Waveforms				$\begin{aligned} & 1.2 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \\ & \hline \end{aligned}$	ns
${ }_{\text {tsk }}(0)$	Output to output skew for multiple channels ${ }^{1}$	Waveform 3		0.5	1.0		2.0	ns
$\mathrm{t}_{\text {Sk }}(\mathrm{p})$	Pulse skew ${ }^{2}$ $\left.\right\|_{\text {tPHL }}$ - tpLH $\left.\right\|_{\text {MAX }}$	Waveform 2		0.5	1.0		1.5	ns

NOTES:

1. It $t_{\text {pN }}$ actual - tpmactual |for any data input to output path compared to any other data input to output path where N and M are either LH or HL . Skew times are valid only under same test conditions (temperature, V_{CC}, loading, etc.). $\mathrm{t}_{\mathrm{SK}}(0)$ compares $\mathrm{t}_{\mathrm{PLH}}$ on a given path to $\mathrm{t}_{\mathrm{PLH}}$ on any other path or compares $t_{P H L}$ on a given path to $t_{P H L}$ on any other path.
2. $\mathrm{t}_{\mathrm{SK}}(\mathrm{p})$ is used to quantify duty cycle characteristics. In essence it compares the input signal duty cycle to the corresponding output signal duty cycle (50 MHz input frequency and 50% duty cycle, tested on data paths only).

9-bit BTL 3.3V latched/registered/pass-thru Futurebus+ transceiver

AC SETUP REQUIREMENTS (Commercial)

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$,		$\begin{gathered} \mathrm{T}_{\text {amb }}=-40 \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \end{gathered}$	
			$\begin{gathered} C_{L}=50 \mathrm{pF}(\mathrm{~A} \text { side }) / C_{D}=30 \mathrm{pF}(\mathrm{~B} \text { side }) \\ R_{\mathrm{L}}=500 \Omega \text { (A side) } / \mathrm{R}_{\mathrm{U}}=16.5 \Omega \text { (B side) } \end{gathered}$			
			MIN	TYP	MIN	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time An to LCAB	Waveform 4	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time An to LCAB	Waveform 4	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time $\overline{B n}$ to LCBA	Waveform 4	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \hline 6.0 \\ & 4.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time $\overline{B n}$ to LCBA	Waveform 4	$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Pulse width, High or Low LCAB or LCBA	Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Data or Output Enable to Output

Waveform 3. Output to Output Skew

OEA

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 2. Propagation Delay for Data
or Output Enable to Output

Waveform 4. Setup and Hold Times, Pulse Widths and Maximum Frequency

Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

NOTE: $\mathrm{V}_{\mathrm{M}}=1.55 \mathrm{~V}$ for $\overline{\mathrm{Bn}}, \mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ for all others.
The shaded areas indicate when the input is permitted to change for predictable output performance

9-bit BTL 3.3V latched/registered/pass-thru

 Futurebus+ transceiver
TEST CIRCUIT AND WAVEFORMS

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{D}}$	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}_{\mathbf{D}}^{(1)}$	$\mathbf{Z}_{\mathbf{E}}{ }^{(1)}$	$\boldsymbol{\theta}$
mm	2.45	0.45	2.10	0.25	0.38	0.23	10.1	10.1	0.65	13.45	13.45	1.60	0.95	0.20	0.12	0.10	1.24	1.24	7^{0}
0	0.25	1.95	0.2	0.22	0.13	9.9	9.9	0.65	12.95	12.95		0.65			0.95	0^{0}			

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT379-1	135E04	MS-022		- ($\begin{aligned} & -99-12-27 \\ & 00-01-19 \end{aligned}$

9-bit BTL 3.3V latched/registered/pass-thru

 Futurebus+ transceiver
9-bit BTL 3.3V latched/registered/pass-thru Futurebus+ transceiver

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

All rights reserved. Printed in U.S.A.
Date of release: 04-00
Document order number:
939775007089

Let's make things better.

PHILIPS

